

AnaPico Products For Radar and EW

www.anapico.com

AnaPico Products

SINGLE-CHANNEL RF / MW SIGNAL GENERATORS

APSINX010/APSINXX: single-channel RF/MW SGs up to 2, 4, 6, 12, 20, 26 GHz, analog modulations

APULNXX: high-performance MW SGs up to 12, 20, 26, 40 GHz, analog modulations

APLCXX: high-purity MW SGs up to 12, 20, 40, 54 GHz, analog modulations

APVSGXX: ultra-agile, vector RF and MW SG up to 4, 6, 12, 20, 40 GHz, digital modulations

SIGNAL GENERATORS

MULTI-CHANNEL RF / MW

APMS-X: up to 4 fully independently adjustable, phase-coherent and phase memory, up to 6, 12, 20, 33, 40 GHz

APLC-X: up to 4 fully independently adjustable, phase-coherent, up to 12, 20, 40, 54 GHz

APVSG-X: up to 4 fully independently adjustable, phase-coherent, 4, 6, 12, 20, 40 GHz

FREQUENCY SYNTHESIZERS SINGLE- / MULTI-CHANNELS

APSYN420(-X) / APSYN140(-X): single- and multi-channel frequency synthesizers up to 20, 40 GHz

APUASYN20(-X): up to 20 GHz, 1/2/3/4 channels, phase-coherent

APMSYN22 / APMSYN40: up to 22 / 40 GHz, multi-channel configurable

APMQS20: NI QuickSyn FSW-0020 replacement and upgrade

SIGNAL SOURCE ANALYZERS / PHASE NOISE TESTERS

APPH: versatile, broadband instruments up to 7, 26, 40 GHz with multiple measurement modes and high measurement sensitivity

RF & MW Signal Sources Relevant for Radar & EW

Enabling Features:

- Compact size and low power consumption
- Single- and multi-channel configurability
- Fast Power and Frequency Switching
- Low Phase Noise and High Signal Purity
- Multi-Channel Sources:
 - Phase Coherence
 - Phase-Coherent Switching
 - Channel-Individual Phase Adjustment
 - APVSG-X:
 - * PDW (Pulse Descriptor Word) Playback and Streaming
 - * Waveform and Time Base Synchronization
 - * Phase Calibratable Mode

RADAR & EW Application Scenarios

Vehicle- Submarine- and Air-Borne Radar Systems

Communication and Jamming

Radar Path Calibration w/ Powerbank Operated SGs

Single- and Multi-Channel RF/MW VSGs

Wideband I/Q modulation, ultra-agile switching / sweeping / chirping. Internal AWG. I/Q data playback and streaming, fast control port, ...

Models	Description	Output Power
APVSG04	10 MHz to 4 GHz	-120 to +17 dBm
APVSG06	10 MHz to 6 GHz	-120 to +15 dBm
APVSG12	10 MHz to12 GHz	-120 to +15 dBm
APVSG20	10 MHz to 20 GHz	-120 to +19 dBm
APVSG40	10 MHz to 40 GHz	-120 to +14 dBm

Features

- Ultra-fast switching: <1 us within mod BW; 2 us wide-band.
- Low phase noise: -145 dBc/Hz at 1 GHz, 20 kHz offset
 -115 dBc/Hz at 40 GHz, 20 kHz offset
- 400 MHz digital and 100 MHz analog modulation bandwidth
- Internal baseband SG: 500 MHz sampling, 512 MSa memory

APVSG: Function Diagram

APVSG: Main Operation Modes

- Analog modulations (AM, FM, PM, Pulse Mod): **Option MOD**
- Some digital modulations: for example, xQAM: **Option IVM**
- Compilation of I/Q files / segments; upload to APVSG internal RAM; (segment ID selective) playback
- I/Q file streaming through FCP (Fast Control Port): **Option FCP**
- Compilation of PDW lists; Upload to APVSG; real-time interpretation to I/Q data; playback: **Option PDW**
- PDW list streaming through FCP (Fast Control Port): **Option FCP**
- Ultra-fast switching: **Option UFS**
- Phase-coherent switching: **Option PHS**
- Time base synchronization: **Option SYNC**
- Phase-calibratable mode: **Option PCM**

Phase Coherence

Phase coherence between 2 different frequencies

How to Reach Phase Coherence

- Each APVSG module has a common highly stable OCXO frequency reference. Frequencies of all channels are digitally synthesized / derived from the common reference frequency with high resolution.
- Same frequency synthesis circuitries of the parallel channels ensures the maximum phase coherence.
- All the channels in the APVSG module are in a similar ambient environment that ensures min. drift difference.
- Each module features a pair of high-frequency clock ports (6 GHz) allowing for excellent synchronization between the multiple APVSG modules.
- Flexible synchronization to different external references: 10 MHz, 100 MHz, and even a reference range of 5 to 250 MHz.

Phase-Coherent Switching

The relative phase between channels 1 and 2 (signal 1 and 2) remains the same after channel 2 temporarily switched to a different frequency.

Phase Memory:

The signal returns to the same absolute phase when returning to the previous frequency and amplitude setting.

Pulse Descriptor Word: Playback and Streaming

Mode 1: PDW List Upload & Playback

A list of PDWs (precompiled file describing pulse sequence parameters) is uploaded into the APVSG internal memory. During the playback, each PDW is translated to the corresponding modulation parameters in real-time for signal generation.

Mode 2: PDW Streaming

PDWs are fed into the APVSG internal memory in real-time through the FCP (Fast Control Port) for immediate playback as described in mode 1.

(AN6008: Pulse Descriptor Word for APVSG)

PDW (Pulse Descriptor Word) Structure

Address Range	Parameter Name	Parameter Group	
1	PDW Configuration		
2-3 Reserved			
4	PDW Modulation	PDW	
5 – 6	- 6 Reserved		
7	PDW Marker		
8 – 15	Reserved		
16 – 23	Start Time		
24 – 31	Pulse Width PDW Tilling		
32 – 33	Waveform Segment	Waveform Modulation	
34 – 47	Reserved		
48	RF Output		
49 – 54	Frequency		
55 – 56	Power	Carrier Output	
57 – 58	Fixed Phase		
60 – 69	Reserved	Offset	
70 – 89	Reserved	FM/PM	
90 – 97	Reserved	AM	
98 – 105	Reserved	Chirp	
106	Sweep On Pulse		
107 – 108	Phase Step		
109 – 116	9 – 116 Sweep Dwell Time		
117 – 124	Sweep Step Time		
125 – 255	Reserved	Reserved	

PCM: Phase Calibratable Mode

- With option PHS, the APVSG guarantees deterministic and reproducible phase relationships between individual channels and individual devices.
- Deterministic and reproducible, however, means that those phase relationships may still vary with power and frequency settings. Varying RF path configurations (gain and attenuation settings must be adjusted) cause jumps in the phase relationship over power and frequency setting. Thus, phase calibration is only feasible for selected combinations of power and frequency. Covering a broader range of power and frequency would require a very high number of phase calibration points, causing prohibitively long calibration measurement times.
- PCM addresses that shortcoming by using less, and therefore larger, ranges over power and frequency using a common RF path configuration and thus generating stable phase relationships.
- Power setting accuracy and resolution is maintained by scaling IQ modulation data instead of adjusting RF path gain or attenuation.

PCM: Effect of PCM

Advantages of PCM

- Static phase relationships over power level.
- Linear phase relationships over frequency.
- Phase calibration over a larger or even the full power and frequency range is possible with only a few calibration points.
- PCM has no impact on switching speed.
 PCM is fully supported in ultra-fast switching (UFS) mode, e.g., with pulse descriptor word (PDW) playback.

Impact of IQ Scaling

• Effective # of bits decreases with bigger IQ scaling range.

Effective number of bits with IQ scaling

Phase vs. Power and Frequency Before and After Calibratable Mode

Phase vs. Power and Frequency After RF Phase Calibration

Contact AnaPico

AnaPico AG Europa-Strasse 9 8152 Glattbrugg Switzerland

Phone: +41 44 440 00 50

Sales: sales@anapico.com

Support: <u>support@anapico.com</u>